Bigbun.com

“Unlimited Possibilities” – New Law of Physics Could Predict Genetic Mutations

The researchers believe that they can exploit this new physics law and find the probability of mutations before they take place.

A University of Portsmouth research team has found a potential way to predict genetic mutations before they occur.

According to a University of Portsmouth study, a new physics law could allow for the early prediction of genetic mutations.

The study discovers that the second law of information dynamics, or “infodynamics,” behaves differently from the second law of thermodynamics. This finding might have major implications for how genomic research, evolutionary biology, computing, big data, physics, and cosmology develop in the future.

Lead author Dr. Melvin Vopson is from the University’s School of Mathematics and Physics. He states “In physics, there are laws that govern everything that happens in the universe, for example how objects move, how energy flows, and so on. Everything is based on the laws of physics. One of the most powerful laws is the second law of thermodynamics, which establishes that entropy – a measure of disorder in an isolated system – can only increase or stay the same, but it will never decrease.”

This is an undisputed law relating to the arrow of time, which demonstrates that time only moves in one direction. It can only flow in one direction and cannot travel backward.

He explains, “Imagine two transparent glass boxes. In the left side, you have red gas molecules, which you can see, like red smoke. In the right side, you have blue smoke, and in between them is a barrier. If you remove the barrier, the two gases will start mixing and the color will change. There is no process that this system can undergo to separate by itself blue and red again. In other words, you cannot lower the entropy or organize the system to how it was before without energy expense, because the entropy only stays constant or increases over time.”

Dr. Vopson is an information physicist. His research focuses on information systems, which can range from a laptop’s hard drive to the DNA and RNA found in living organisms. He partnered with Dr. Serban Lepadatu from the University of Central Lancashire to write this paper.

Dr. Vopson adds, “If the second law of thermodynamics states that entropy needs to stay constant or increase over time, I thought that perhaps information entropy would be the same. But what Dr. Lepadatu and I found was the exact opposite – it decreases over time. The second law of information dynamics works exactly in opposition to the second law of thermodynamics.”

According to Dr. Vopson, this could be the cause of biological organisms’ genetic mutations.

“The worldwide consensus is that mutations take place at random and then natural selection dictates whether the mutation is good or bad for an organism”, he explained. If the mutation is beneficial for an organism, it will be kept. But what if there is a hidden process that drives these mutations? Every time we see something we don’t understand, we describe it as ‘random’ or ‘chaotic’ or ‘paranormal’, but it’s only our inability to explain it. If we can start looking at genetic mutations from a deterministic point of view, we can exploit this new physics law to predict mutations – or the probability of mutations – before they take place.”

Dr. Vopson and colleagues analyzed Covid-19 (Sars-CoV-2) genomes and discovered that their information entropy reduced with time: “The best example of something that undergoes a number of mutations in a short space of time is a virus. The pandemic has given us the ideal test sample as Sars-CoV-2 mutated into so many variants and the data available is unbelievable.”

He continues, “The Covid data confirms the second law of infodynamics and the research opens up unlimited possibilities. Imagine looking at a particular genome and judging whether a mutation is beneficial before it happens. This could be game-changing technology which could be used in genetic therapies, the pharmaceutical industry, evolutionary biology, and pandemic research.”

Reference: “Second law of information dynamics” by Melvin M. Vopson and S. Lepadatu, 11 July 2022, AIP Advances.
DOI: 10.1063/5.0100358

Related posts

Yale Scientists “Supercharge” Tumor-Attacking T Cells To Improve Cancer Immunotherapy

BLGBUN

Lake Mead – The Largest Reservoir in the United States – Drops to a Record Low

BLGBUN

A New Way That Cancer Cells Can Repair DNA Damage Has Been Discovered

BLGBUN

A New Cause of Parkinson’s Related Cell Death Discovered

BLGBUN

Decades in the Making – New Catalyst Could Make Hydrogen Fuel Cells Affordable

BLGBUN

The Jewel of Human Cooperation and Ingenuity Shines Brightly in This Incredible ISS Image

BLGBUN